Diberdayakan oleh Blogger.
RSS

1. Persamaan Dan Pertidaksamaan Linear . 
Matematika mempunyai materi yang sangat luas, tetapi satu sama lain mempunyai kaitan. Jadi dalam memahami matematika sebaiknya jangan tanggung-tanggung, walaupun sebenarnya ilmu apapun jika kita memahaminya dengan mantap maka hasilnya juga akan mantap. Kali ini materi yang akan kita bahas yaitu persamaan dan pertidaksamaan linear.
1. Persamaan Linear
Persamaan linear merupakan sebuah persamaan aljabar dimana tiap sukunya mengandung konstanta atau perkalian konstanta dengan tanda sama dengan serta variabelnya berpangkat satu. Persamaan ini dikatakan linear karena jika kita gambarkan dalam koordinat cartesius berbentuk garis lurus. Sistem persamaan linear disebut sistem persamaan linear satu variabel karena dalam sistem tersebut mempunyai satu variabel. Bentuk umum untuk persamaan linear satu variabel yaitu y=mx+b yang dalam hal ini konstanta m menggambarkan gradien garis serta konstanta b adalah titik potong garis dengan sumbu-y.
FuncionLineal02.svg
Jika dalam sistem persamaan linear terdapat dua variabel maka sistem persamaannya disebut sistem persamaan linear dua variabel yang mempunyai bentuk umum Ax+By+C=0 dimana bentuk umum ini mempunyai bentuk standar ax+by=c dengan konstanta ≠0.
Dalam mencari titik potong suatu gradien kita gunakan rumus sebagai berikut :
Titik potong dengan sumbu x maka
Screenshot_18
Titik potong dengan sumbu y maka
Screenshot_19


Untuk persamaan linear yang memiliki lebih dari dua variabel memiliki bentuk umum :
Screenshot_20
dimana a1 merupakan koefisien untuk variabel pertama x1, begitu juga untuk yang lainnya sampai variabel ke-n.
Untuk lebih memahami masalah persamaan linera perhatikan contoh berikut :
1. Berikut ini diberikan bentuk beberapa persamaan, tentukan apakah termasuk persamaan linear atau bukan.
a.       x +  y = 5 (persamaan linear dua variabel)
b.      x+ 6x = -8 (persamaan kuadrat satu variabel)
c.       p+ q= 13 (persamaan kuadrat dua variabel)
d.      2x + 4y + z = 6 (persamaan linear tiga varibel)
2.  Carilah penyelesaian sistem persamaan  x + 2y = 8 dan  2x – y = 6
Jawab  ;
x + 2y = 8
2x – y = 6
(i) mengeliminasi variable x
x + 2y = 8  | x 2 | –> 2x + 4y = 16
2x – y = 6   | x 1 | –> 2x –    y = 6              –   ………*
5y  = 10
y = 2
masukkan nilai y = 2  ke dalam suatu persamaan
x  + 2 y = 8
x  + 2. 2 = 8
x + 4 = 8
x = 8 – 4
x = 4
HP = {4, 2}
(ii) mengeliminasi variable y
x + 2y = 8  | x 1 | –> x + 2y =   8
2x – y = 6   | x 2 | –> 4x – 2y = 12              +     ……*
5x  = 20
x  = 4
masukkan nilai x = 4  ke dalam suatu persamaan
x  + 2 y = 8
4  + 2y = 8
2y = 8 – 4
2y = 4
y = 2
4  = 2
HP =  {4, 2}
3. Selesaikan soal no 2 menggunakan cara substitusi
Jawab :
Kita ambil persamaan pertama yang akan disubstitusikan yaitu   x + 2y = 8
Selanjutnya persamaan tersebut kita ubah menjadi  x = 8 – 2y,
Persamaan yang diubah  tersebut disubstitusikan ke persamaan
2x – y = 6  menjadi :             2 (8 – 2y) – y = 6  ; (x persamaan kedua menjadi  x = 8 – 2y)
16 – 4y – y = 6
16 – 5y = 6
-5y = 6 – 16
-5y = -10
5y = 10
y =  2
masukkan nilai y=2 ke dalam salah satu persamaan :
x + 2y = 8
x + 2. 2. = 8
x + 4  = 8
x = 8 – 4
x = 4
Jadi  penyelesaian sistem persamaan tersebut adalah x = 4 dan  y = 2.
Himpunan penyelesaiannya : HP = {4, 2}
4. Harga 2 buah mangga dan 3 buah jeruk adalah Rp. 6000, kemudian apabila membeli 5 buah mangga dan  4 buah jeruk adalah Rp11.500,-
Berapa jumlah uang yang harus dibayar apabila kita akan membeli  4 buah mangga dan 5 . buah jeruk ?
Jawab :
Dalam menyelesaikan persoalan cerita seperti di atas diperlukan penggunaan model       matematika.
Misal:  harga 1 buah mangga adalah x dan harga 1 buah jeruk adalah y
Maka model matematika soal tersebut di atas adalah :
2x + 3 y = 6000
5x + 4 y = 11500
Ditanya  4 x + 5 y =  ?
Kita eliminasi variable x :
2x + 3 y = 6000     | x 5 |  = 10x + 15 y = 30.000
5x + 4 y = 11500   | x 2 |  = 10x +   8 y = 23.000    –    ( karena x persamaan 1 dan 2 +)
7y  = 7000
y  = 1000
masukkan ke dalam suatu persamaan :
2x + 3 y = 6000
2x + 3 . 1000 = 6000
2x + 3000 = 6000
2x   = 6000 – 3000
2x = 3000
x = 1500
didapatkan x = 1500 (harga sebuah mangga) dan y = 1000 (harga sebuah jeruk)
sehingga uang yang harus dibayar untuk membeli 4 buah mangga dan 5 buah jeruk
adalah  4 x + 5 y = 4. 1500 + 5. 1000
= 6000 + 5000 = Rp. 11.000,-
2. Pertidaksamaan Linear
Pertidaksamaan linear merupakan kalimat terbuka dalam matematika yang terdiri dari variabel berderajat satu dan dihubungkan dengan tanda pertidaksamaan. Bentuk umum dari pertidaksamaan linear dua variabel yaitu :
ax+by>c
ax+by<c
ax+by≥c
ax+by≤c
dengan a koefisien untuk x, b koefisien dari y dan c konstanta dimana a,b,c anggota bilangan riil dan a≠0,b≠0 .
Suatu penyelesaian dari pertidaksamaan linear biasanya digambarkan dengan grafik, adapun langkah-langkah dalam menggambar grafik pertidaksamaan linear yaitu sebagai berikut :
1. Ubah tanda ketidaksamaan menjadi persamaan
2. Tentukan titik potong koordinat kartesius dengan sumbu x dan sumbu y.
3. Gunakan titik uji untuk menentukan daerah penyelesaian.
4. Gambarkan grafiknya dan beri arsiran pada daerah penyelesaiannya.
Untuk lebih memahami tentang pertidaksamaan perhatikan beberapa contoh berikut :
contoh 1.
Contoh 1 Pertidaksamaan Linear Dua Variabel
contoh 2.
Contoh 2 Pertidaksamaan Linear Dua Variabel
contoh 3.
Gambarlah daerah penyelesaian dari sistem pertidaksamaan linear berikut untuk xanggota bilangan real.
–x + 8y ≤ 80
2x – 4y ≤ 5
2x + y ≥ 12
2x – y ≥ 4
x ≥ 0, y ≥ 0
Penyelesaian :
Ubah pertidaksamaan menjadi bentuk persamaan dan gambarkan pada bidang koordinat
titik-titik-koordinat

tabel-titik-titik-koordinat

grafik-persamaan-linear
Selanjutnya uji titiknya untuk menentukan daerah penyelesaian. Dapat dengan cara substitusi atau dengan garis bilangan. Pada contoh kali ini menggunakan substitusi misalkan kita pilih titik (0,12)
uji-titik
Setelah titk tersebut disubstitusi menghasilkan pernyataan yang salah, sehingga daerah penyelesaiannya berlawanan dengan daerah yang mengandung titik (0,12).
daerah-penyelesaian
Dengan cara yang sama untuk persamaan yang lain telah kita peroleh grafik sebagai berikut.
Daerah penyelesaian dari pertidaksamaan tersebut adalah daerah yang terkena seluruh arsiran, yaitu :
daerah-penyelesaian-2
Semoga artikel ini dapat bermanfaat , Selamat Belajar dan Semoga Sukses
2. Mengenal Rumus-rumus lain Aljabar
Matematika merupakan suatu ilmu yang pasti semua orang temui ketika mereka duduk dibangku sd, smp, sampai sma. Kalo masalah perguruan tinggi tergantung jurusan yang diambil masing-masing. Nah, mau ga mau kita juga harus mempelajari materi dalam matematika itu. Kali ini yang kita bahas yaitu mengenai Ajabar. Apa itu Aljabar?
aljabar
Aljabar merupakan salah satu cabang matematika yang mempelajari penyederhanaan serta pemecahan masalah menggunakan simbol yang menjadi pengganti konstanta atau variabel.
Unsur-Unsur Aljabar
1. Variabel, konstanta, faktor
Variabel/peubah adalah lambang pengganti suatu bilangan yang nilainya belum diketahui dengan jelas, biasanya dilambangkan dengan huruf kecil a, b, c, …, z.
Konstanta adalah suku dari suatu bentuk aljabar dan berupa bilangan serta tidak memuat variabel.
Jika terdapat suatu bilangan a dan dapat diubah menjadi a=p.q dimana a, p, dan q bilangan bulat maka p dan q disebut faktor-faktor dari a.
contoh : 7x+3y+8x-5y+6
variabel : x dan y
konstanta : 6
7x dapat diuraikan menjadi 7x=7x.1 atau 7x=7.x sehingga faktor dari7x yaitu 1, 7, x, 7x
2. Suku Sejenis dan Suku Tak Sejenis
Suku merupakan variabel koefisien atau konstanta pada bentuk aljabar yang dipisahkan dengan operasi jumlah atau selisih.
Suku-suku sejenis merupakan suku yang memiliki variabel dan pangkat dari masing-masing variabel yang sama. contoh : 5x dan -3x, 2a² dan a², y dan 6y
Suku-suku tak sejenis merupakan suku yang memiliki variabel dan pangkat dari masing-masing variabel yang tidak sama.
contoh : 2x dan 3x², -7y dan -x²
Suku satu merupakan bentuk aljabar yang tidak dihubungkan oleh operasi jumlah dan selisih. contoh : 2x, 4y, …
Suku dua merupakan bentuk aljabar yang dihubungkan oleh satu operasi jumlah atau selisih. contoh : 2x-4y, a²-5, …
Suku tiga merupakan bentuk aljabar yang dihubungkan oleh dua operasi jumlah atau selisih. contoh : 2x²+3×-1, 3x+4y-xy, …
Operasi Hitung Pada Aljabar
1. Penjumlahan dan Pengurangan Bentuk Aljabar
Operasi ini hanya dapat dilakukan pada suku-suku yang sejenis.
2. Perkalian
Pada perkalian bilangan bulat berlaku sifat distributif a(b+c)=ab+ac dan a(b-c)=ab-ac. Sifat ini juga berlaku untuk bentuk aljabar.
3. Perpangkatan
Dalam bilangan bulat Operasi perpangkatan dapat diartikan sebagai perkalian berulang dengan bilangan yang sama. Hal yang sama berlaku untuk aljabar, pada perpangkatan aljabar koefisien tiap suku ditentukan menurut segitiga pascal.
SEGITIGA PASCAL
ALJABAR1
4. Pembagian
Hasil dari pembagian dua buah bentuk aljabar diperoleh dengan terlebih dahulu menentukan faktor sekutu dari masing-masing selanjutnya melakukan pembagian pada pembilang dan penyebutnya.
5. Substitusi Pada Bentuk Aljabar
Nilai dari suatu bentuk aljabar dapat diperoleh dengan mensubstitusikan sembarang bilangan pada variabel bentuk aljabar tersebut.
6. KPK dan FPB Bentuk Aljabar
Dalam menentukan KPK dan FPB bentuk aljabar dapat dilakukan dengan menyatakan bentuk-bentuk aljabar menjadi perkalian faktor-faktor primanya.
CONTOH FPB DAN KPK ALJABAR
Pecahan Bentuk Aljabar
1. Menyederhanakan Bentuk Pecahan Aljabar
Pecahan bentuk aljabar dikatakan mempunyai bentuk paling sederhana apabila pembilang dan penyebutnya tidak mempunyai faktor persekutuan kecuali 1 serta penyebutnya ≠0. Untuk menyederhanakan pecahan bentuk aljabar dapat dilakukan dengan membagi pembilang dan penyebutnya dengan FPB dari keduanya.
2. Operasi Hitung Pecahan Aljabar Dengan Penyebut Suku Tunggal
a. Penjumlahan
Penjumlahan dari pecahan aljabar dilakukan dengan cara yang sama seperti halnya pecahan biasa, yaitu dengan menyamakan penyebut dari pecahan dengan cara mencari KPK nya kemudian baru dijumlahkan. Perhatikan contoh berikut.
CONTOH PENJUMLAHAN PECAHAN ALJABAR
b. Perkalian dan Pembagian
Perkalian dari pecahan aljabar tidak jauh berbeda dengan perkalian pecahan biasa. Perhatikan contoh berikut :
CONTOH PERKALIAN PECAHAN ALJABAR
c. Perpangkatan Pecahan Bentuk Aljabar
Perpangakatan merupakan perkalian berulang dengan bilangan yang sama, hal tersebut juga berlaku dengan perpangkatan bentuk aljabar.
CONTOH PECAHAN ALJABAR
Itulah sedikit ulasan tentang Aljabar, semoga dapat membantu dalam pemahaman mengenai materi alajabar. 

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 komentar:

Posting Komentar